Sparse Solutions of Underdetermined Linear Systems
نویسندگان
چکیده
Ourmain goal here is to discuss perspectives of applications based on solving underdetermined systems of linear equations (SLE). This discussion will include interconnection of underdetermined SLE with global problems of Information Theory and with data measuring and representation. The preference will be given to the description of the hypothetic destination point of the undertaken efforts, the current status of the problem, and possible methods to overcome difficulties on the way to that destination point. We do not pretend on full survey of the current state of the theoretic researches which are very extensive now. We are going to discuss only some fundamental theoretical results justifying main applied ideas. In the end of the chapter we give numerical results related to the popular algorithms like l minimization, StagewiseOrthogonal Greedy Algorithm, Reweighted l algorithm, and the new l Greedy Algorithm.
منابع مشابه
Non-Iterative Computation of Sparsifiable Solutions to Underdetermined Kronecker Product Linear Systems of Equations
The problem of computing sparse (mostly zero) or sparsifiable (by linear transformation) solutions to underdetermined linear systems of equations has applications in compressed sensing and minimumexposure medical imaging. We present a simple, noniterative, low-computational-cost algorithm for computing a sparse solution to an underdetermined linear system of equations. The system matrix is the ...
متن کاملA Non-Iterative Procedure for Computing Sparse and Sparsifiable Solutions to Slightly Underdetermined Linear Systems of Equations
The problem of computing sparse (mostly zero) solutions to underdetermined linear systems of equations has received much attention recently, due to its applications to compressed sensing. Under mild assumptions, the sparsest solution has minimum-L1norm, and can be computed using linear programming. In some applications (valid deconvolution, singular linear transformations), the linear system is...
متن کاملLocation of Non-Zeros in Sparse Solutions of Underdetermined Linear Systems of Equations
The problem of computing sparse (mostly zero) or sparsifiable (by linear transformation) solutions to greatly underdetermined linear systems of equations has applications in compressed sensing. The locations of the nonzero elements in the solution is a much smaller set of variables than the solution itself. We present explicit equations for the relatively few variables that determine these nonz...
متن کاملA fast randomized Kaczmarz algorithm for sparse solutions of consistent linear systems
The Kaczmarz algorithm is a popular solver for overdetermined linear systems due to its simplicity and speed. In this paper, we propose a modification that speeds up the convergence of the randomized Kaczmarz algorithm for systems of linear equations with sparse solutions. The speedup is achieved by projecting every iterate onto a weighted row of the linear system while maintaining the random r...
متن کاملA fast approach for overcomplete sparse decomposition based on smoothed ` 0 norm
In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdetermined Sparse Component Analysis (SCA), atomic decomposition on overcomplete dictionaries, compressed sensing, and decoding real £eld codes. Contr...
متن کاملA fast approach for overcomplete sparse decomposition based on smoothed l norm
In this paper, a fast algorithm for overcomplete sparse decomposition, called SL0, is proposed. The algorithm is essentially a method for obtaining sparse solutions of underdetermined systems of linear equations, and its applications include underdetermined Sparse Component Analysis (SCA), atomic decomposition on overcomplete dictionaries, compressed sensing, and decoding real field codes. Cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010